Basic Circuit Theory \& Patch-clamp Amplifier

서울대학교 의과대학 생리학교실
이석호

The Golden rule of Operational Amplifier (Analog Devices, USA)

ANALOG DEVICES

high input resistance ($\mathbf{R}_{\mathbf{i}} \rightarrow \infty$)
(i between + and - is zero, cf. $\mathrm{R}_{\mathrm{o}} \rightarrow 0$)
(-): inverting input
$(+)$: non-inverting input
$V_{O}=A\left(V_{+}-V_{-}\right)$

$$
V_{O}=A\left(V_{+}-V_{-}\right)
$$

If negative feedback line (blue) is connected $V_{-}=V_{+}$, when open loop gain (A) is large ($A>10^{5}$)

$$
\begin{gathered}
\cdot \text { If } V_{-}=V_{o} \\
\mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{+} \mathrm{A} /(1+\mathrm{A}) \cong \mathrm{V}_{+}=\mathrm{V}_{-}
\end{gathered}
$$

- Even if $V_{o}=x V_{-}$(by inserting resistor on blue), as long as $x \ll \mathrm{~A}$,

$$
\begin{gathered}
x \mathrm{~V}_{-}=\mathrm{A}\left(\mathrm{~V}_{+}-\mathrm{V}_{-}\right) \\
\mathrm{V}_{-}=\mathrm{A} /(x+\mathrm{A}) \mathrm{V}_{+} \cong \mathrm{V}_{+} . \\
\therefore \mathrm{V}_{+}=\mathrm{V}_{-} .
\end{gathered}
$$

Inverting Amplifier	$V_{\text {out }}$
When V_{+}is grounded a the node between Vo a 1) $V_{-}=V_{+}=0$ 2) $\left(\mathbf{V}_{\text {in }}-V_{\text {- }}\right) / R_{1}+\left(V_{\text {out }}\right.$ $\Rightarrow V_{\text {out }} / V_{\text {in }}=-R_{2} / R_{1} .$	

Non-inverting Amplifier

When V_{+}is grounded and the negative feedback is connected, the node between Vo and V- ('N') becomes an imaginary ground

1) $V_{-}=V_{+}=V_{\text {in }}$
2) $\left(0-V_{\text {in }}\right) / R_{1}+\left(V_{\text {out }}-V_{\text {in }}\right) / R_{2}=\mathbf{0}$ (Kirchhoff's rule)
$\Rightarrow V_{\text {out }} / V_{\text {in }}=1+\left(R_{2} / R_{1}\right)$.

Voltage follower

$\mathrm{V}_{\text {load }}=\mathrm{V}_{\mathrm{o}} *\left(\mathrm{Z}_{\mathrm{L}} / \mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{s}}\right)$
As $\mathrm{Z}_{\mathrm{L}} \rightarrow 0, \mathrm{~V}_{\text {load }} \rightarrow 0$
Ideal Amp. : $\mathrm{Z}_{\mathrm{s}} \rightarrow 0$

Field potential measurement circuit

RC circuit \& patch-clamp signals

RC-Circuit I

Input Resistance $\left(R_{m}\right)=\left(\Delta V_{s s} / I_{T}\right)-R_{s}$

$$
\begin{aligned}
& \Delta \mathrm{E}_{\mathrm{Ss}}=\Delta \mathrm{V}_{\mathrm{m}}+\Delta \mathrm{V}_{\mathrm{S}}=\mathrm{i}_{\mathrm{T}} \cdot\left(\mathrm{R}_{\mathrm{m}}+\mathrm{R}_{\mathrm{S}}\right) \\
& \mathrm{E}(\mathrm{t})=\Delta \mathrm{V}_{\mathrm{m}} \cdot\left(1-\exp \left(-\mathrm{t} / \tau_{\mathrm{m}}\right)\right)+\mathrm{i}_{\mathrm{T}} \cdot \mathrm{R}_{\mathrm{S}}
\end{aligned}
$$

Off-line R_{s} compensation

Goal: Calc $\mathrm{G}_{\mathrm{m}} \Rightarrow \mathrm{I}_{\text {corr }}=\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{cmd}}$.
$\mathrm{I}_{\mathrm{T}}=$ measured current $\mathrm{I}_{\mathrm{R}}=\mathrm{I}$ thr channels in cell mb

$$
\begin{aligned}
& V_{c m d}=R_{S} I_{T}+V_{m} . \\
& I_{R}=I_{T}-I_{C}=I_{T}-C_{m} d V_{m} / d t
\end{aligned}
$$

1)

$$
\mathrm{V}_{\mathrm{cmd}}=\text { command potential }
$$

$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{R}}: \mathrm{I}\right.$ thr. $\left.\mathrm{R}_{\mathrm{m}}\right)$

When $\mathrm{V}_{\mathrm{cmd}}=$ const, inserting 1) into 2) yields,

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{T}}+\mathrm{C}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}} \mathrm{dI}_{\mathrm{T}} / \mathrm{dt}
$$

$$
\mathrm{G}_{\mathrm{m}}=\mathrm{I}_{\mathrm{R}} / \mathrm{V}_{\mathrm{m}}=\left(\mathrm{I}_{\mathrm{T}}+\mathrm{C}_{\mathrm{m}} \mathrm{R}_{\mathrm{S}} \mathrm{dI} \mathrm{I}_{\mathrm{T}} / \mathrm{dt}\right) /\left(\mathrm{V}_{\mathrm{cmd}}-\mathrm{R}_{\mathrm{S}} \mathrm{I}_{\mathrm{T}}\right)
$$

$\mathrm{I}_{\text {corr }}=\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{cmd}}=\mathrm{V}_{\mathrm{cmd}}\left(\mathrm{I}_{\mathrm{T}}+\mathrm{C}_{\mathrm{m}} \mathrm{R}_{\mathrm{s}} \mathrm{dI}_{\mathrm{T}} / \mathrm{dt}\right) /\left(\mathrm{V}_{\mathrm{cmd}}-\mathrm{R}_{\mathrm{S}} \mathrm{I}_{\mathrm{T}}\right)$

Error sources

\square

Now, head stages contain voltage follower as well as I-V converter circuit, since EPC10 and Multiclmap700B

Bridge Balance

Technique for separation of V_{m} from V_{p}
$\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\mathrm{m}}+\mathrm{I}_{\mathrm{inj}} \mathrm{R}_{\mathrm{S}}$

A

Dynamic clamp

Monitoring V_{m} response under current clamp mode caused by injection of current that follows

$$
\mathrm{I}_{\mathrm{syn}}(\mathrm{t})=g(\mathrm{t})\left[\mathrm{V}_{\mathrm{m}}(\mathrm{t})-\mathrm{E}_{\mathrm{rev}}\right]
$$

1) $\mathrm{E}_{\text {rev }}$ and $g(\mathrm{t})$ are pre-specified
2) The injection current $\left[\left[_{\text {syn }}(\mathrm{t})\right]\right.$ should be constantly updated acc. to the equation with reference to instantaneously monitored V_{m}.

Filter

Euler's Formula

Taylor series of $\mathrm{f}(\mathrm{x})$ from $\mathrm{x}=0$
$f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+\ldots$.

$$
\begin{aligned}
& \text { Proof of Euler's formula } \\
& \begin{aligned}
e^{i x} & =1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\frac{(i x)^{7}}{7!}+\frac{(i x)^{8}}{8!}+\cdots \\
& =1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{i x^{7}}{7!}+\frac{x^{8}}{8!}+\cdots \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right) \\
& =\cos x+i \sin x .
\end{aligned}
\end{aligned}
$$

$$
\exp (j \theta)=\cos (\theta)+j \sin (\theta)
$$

$$
\exp (-j \theta)=\cos (\theta)-j \sin (\theta)
$$

$$
\mathrm{A}+j \mathrm{~B}=r \cdot \exp (j \theta)
$$

$$
\text { where } r=\sqrt{ }\left|\mathrm{A}^{2}+\mathrm{B}^{2}\right|
$$

$$
\theta=\arctan (\mathrm{B} / \mathrm{A})
$$

Impedance of RC-Circuit

$\mathrm{v}(\mathrm{t})=\mathrm{v}_{0} \cdot \cos (\omega \mathrm{t})$
$\mathrm{i}_{\mathrm{R}}(\mathrm{t})=\left[\mathrm{v}_{0} / \mathrm{R}\right] \cos (\omega \mathrm{t})$
$Z_{R}=R$
$\mathrm{i}_{\mathrm{C}}(\mathrm{t})=\mathrm{Cdv} / \mathrm{dt}=-\omega \mathrm{C}_{0} \sin (\omega \mathrm{t})$
$\exp (j \omega t)=\cos \omega t+j \sin \omega t:$ Euler's formula
$\mathrm{v}(\mathrm{t})=\operatorname{Re}\left[\mathrm{v}_{0} \exp (\mathrm{j} \omega \mathrm{t})\right]$
$i_{C}(t)=C d v / d t=C \cdot \operatorname{Re}\left[v_{0} j \omega \exp (j \omega t)\right]=-\omega C v_{0} \sin (\omega t)$
$\mathrm{Zc}=1 / \mathrm{j} \omega \mathrm{C}$

Fourier transform

A function on the time-domain, $\mathrm{v}(t)$, can be converted into another function on frequency domain, $\mathrm{V}(f)$, without loss of information

$$
\mathrm{v}(t) \Leftrightarrow \mathrm{V}(f)
$$

$$
v(t)=\int_{-\infty}^{\infty} V(f) \cdot \exp (i \omega t) d f \quad \Leftrightarrow \quad V(f)=\int_{-\infty}^{\infty} v(t) \cdot \exp (-i \omega t) d t
$$

$\mathrm{d} v(t) / \mathrm{dt} \Leftrightarrow \mathrm{j} \omega V(f)$
(derivatve theorem of Fourier transform)

Proof | $\mathrm{dV}(f) / \mathrm{dt}=\int[\mathrm{dv} / \mathrm{dt} \exp (-\mathrm{j} w t)+\mathrm{v}(t)(-\mathrm{j} w) \exp (-\mathrm{j} w t)] \mathrm{dt}$ |
| :---: |
| Since $\mathrm{dV}(\mathrm{f}) / \mathrm{dt}=0$ |
| $\int[\mathrm{dv} / \mathrm{dt} \exp (-\mathrm{j} w t)] \mathrm{dt}=\mathrm{j} w \int[\mathrm{v}(t) \exp (-\mathrm{j} w t)] \mathrm{dt}=\mathrm{jw} \mathrm{V}(f)$ |
| $\int_{-\infty}^{\infty} d v / d t \cdot \exp (-j \omega t) d t=j w V(f)$ |
| $\therefore \mathrm{d} v(t) / \mathrm{dt} \Leftrightarrow \mathrm{j} \omega V(f)$ |

Impedance of RC-Circuit

Ohm's law

I_{R}
$\mathrm{I}_{\mathrm{R}}=\mathrm{V} / \mathrm{R}$
$\mathrm{Z}_{\mathrm{R}}=\mathrm{R}$

$\mathrm{Q}=\mathrm{C} \cdot \mathrm{V}$
$\mathrm{dQ} / \mathrm{dt}=\mathrm{C} \cdot \mathrm{dV} / \mathrm{dt}$
$\mathrm{i}_{\mathrm{C}}(t)=\mathrm{C} \cdot \mathrm{dV} / \mathrm{dt}$
$\downarrow \mathrm{F} \cdot \mathrm{T}$.
$\mathrm{I}(f)=\mathrm{j} \omega \mathrm{C} \mathrm{V}(f)$
$\mathrm{Z}_{\mathrm{c}}=\mathrm{j} \omega \mathrm{C}$
:---
I_{C}

$i_{R}=i_{C}$,
$\left(V_{\text {in }}-V_{\text {out }}\right) / R=V_{\text {out }} / Z_{c}$.
Since $Z_{c}=1 / j \omega C$
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} /(1+\mathrm{j} \omega \mathrm{RC}):$ Transfer function

Rayleigh's Theorem
$e(t) \Leftrightarrow E(f)$: F.T. pair
$\int|e(t)|^{2} \mathrm{~d} t=\int|E(f)|^{2} \mathrm{~d} f$
: law of energy conservation

Power $=\mathrm{V} \cdot \mathrm{V}^{*}$
$\mathrm{V}_{\text {out }} \cdot \mathrm{V}_{\text {out }} *=\left|\mathrm{V}_{\text {out }}\right|^{2}=\left|\mathrm{V}_{\text {in }}\right|^{2} /\left[1+(\omega \tau)^{2}\right]$

Def. cut-off frequency $\left(\mathrm{f}_{\mathrm{c}}\right) \equiv f$ at $\left|\mathrm{V}_{\text {out }}\right|^{2}=\left|\mathrm{V}_{\text {in }}\right|^{2} / 2$ $\left(\omega_{\mathrm{c}} \tau\right)^{2}=\left(2 \pi \mathrm{f}_{\mathrm{c}} \tau\right)^{2}=1$ $\mathrm{f}_{\mathrm{c}}=1 /(2 \pi \tau)$

$$
\left|\mathrm{V}_{\text {in }}\right|^{2}=\mathrm{P}_{\text {in }} \quad \text { Filter } \rightarrow\left|\mathrm{V}_{\text {out }}\right|^{2}=\mathrm{P}_{\text {out }}
$$

cut-off frequency
of low-pass filter

In CC mode, measured voltage is low-pass filtered version of real V_{m}

$$
\begin{gathered}
\mathrm{V}_{\mathrm{m}, \text { rec }}=\mathrm{V}_{\mathrm{m}} /\left(1+\mathrm{j} \omega \mathrm{R}_{\mathrm{s}} \mathrm{C}_{\mathrm{p}}\right) \\
\tau_{\text {fast }}=\mathrm{R}_{\mathrm{s}} \mathrm{C}_{\mathrm{p}}=10 \mathrm{M} \Omega \times 5 \mathrm{pF}=50 \mu \mathrm{~s} \\
\mathrm{f}_{\mathrm{c}}=1 /\left(2 \pi \tau_{\text {fast }}\right)=3.2 \mathrm{kHz}
\end{gathered}
$$

Cell Capacitance Monitoring

Cell membrane as a capacitor

specific capacitance of lipid bilayer $(\varepsilon)=1 \mu \mathrm{~F} / \mathrm{cm}^{2}$.

$$
C_{m}=\varepsilon A, \text { where } A \text { is the cell surface area }
$$

conductance (Y)

parallel combination: $\mathrm{Y}=\mathrm{Y}_{1}+\mathrm{Y}_{2}+\ldots$
serial combination: $1 / \mathrm{Y}=1 / \mathrm{Y}_{1}+1 / \mathrm{Y}_{2}+\ldots$
impedance (Z)
parallel combination: $1 / Z=1 / Z_{1}+1 / Z_{2}+\ldots$
serial combination: $\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+.$.
impedence of
resistor: R
capacitor: $1 /(\mathrm{j} \omega \mathrm{C})$
conductance of
resistor: 1/R
capacitor: $j \omega \mathrm{C}$

Euler's Formula

Taylor series of $\mathrm{f}(\mathrm{x})$ from $\mathrm{x}=0$

$f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+\ldots$.
roof of Euler's formula
$e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\frac{(i x)^{7}}{7!}+\frac{(i x)^{8}}{8!}+\cdots$
$=1+i x-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{i x^{5}}{5!}-\frac{x^{6}}{6!}-\frac{i x^{7}}{7!}+\frac{x^{8}}{8!}+\cdots$
$=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)$
$=\cos x+i \sin x$

$\exp (j \theta)=\cos (\theta)+j \sin (\theta)$
$\exp (-j \theta)=\cos (\theta)-j \sin (\theta)$
$\mathrm{A}+j \mathrm{~B}=r \cdot \exp (j \theta)$,
where $r=\sqrt{ }\left|\mathrm{A}^{2}+\mathrm{B}^{2}\right|$,

$$
\theta=\arctan (\mathrm{B} / \mathrm{A})
$$

Phase shift

$\mathrm{v}(\mathrm{t})=\mathrm{V}^{\prime} \cdot \exp (j \omega \mathrm{t})$
$\mathrm{i}(\mathrm{t})=\mathrm{y}(\omega) \cdot \mathrm{v}(\mathrm{t})=\mathrm{I}^{\prime} \cdot \exp [j(\omega \mathrm{t}+\theta)]$
$\mathrm{y}(\omega)=\mathrm{i}(\mathrm{t}) / \mathrm{v}(\mathrm{t})=\left(\mathrm{I}^{\prime} / \mathrm{V}^{\prime}\right) \cdot \exp (j \theta)$

$=\left(\mathrm{I}^{\prime} / \mathrm{V}^{\prime}\right) \cdot(\cos \theta+j \sin \theta)$
$=\mathrm{A}+j \mathrm{~B}$
θ : phase $\operatorname{shift}=\arctan (B / A)$

Combined Conductance (Y)

$$
\begin{gathered}
Y_{M}=G_{M}+j \omega C_{M} . \\
Y_{A}=1 / R_{A} . \\
1 / Y=1 / Y_{M}+1 / Y_{A} .
\end{gathered}
$$

$$
\frac{1}{\mathrm{Y}(\omega)}=\frac{1}{\left(G_{M}+j \omega C_{M}\right)}+R_{A}
$$

$$
\mathrm{Y}(\omega)=\frac{G_{M}+j \omega C_{M}}{1+R_{A} G_{M}+R_{A}\left(j \omega C_{M}\right)}
$$

When $\mathrm{G}_{\mathrm{M}} \ll 1 / \mathrm{R}_{\mathrm{A}}$,

$$
\mathrm{Y}(\omega)=\left(\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}+\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right) /\left(1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right)
$$

$$
\begin{aligned}
& \mathrm{Y}(\omega)=\left(\mathrm{G}_{\mathrm{M}}+\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right) /\left(1+\mathrm{R}_{\mathrm{A}} \mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right)\right) \\
& \mathrm{Y}(\omega)=\left(\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}+\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right) /\left(1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right) \\
& \operatorname{Re}(\mathrm{Y})=\left[\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right] /\left[1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right] \\
& \operatorname{Im}(\mathrm{Y})=\omega \mathrm{C}_{\mathrm{M}} /\left(1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right)
\end{aligned}
$$

baseline phase shift $=\arctan (\operatorname{Im} / \mathrm{Re})$

$$
=\arctan \left[\omega \mathrm{C}_{\mathrm{M}} /\left(\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right)\right] .
$$

$$
\mathrm{Y}(\omega)=\left[\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}+\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right] /\left[1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right]
$$

e.g.)

Let $\mathrm{C}_{\mathrm{m}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{a}}=10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{m}}=2 \mathrm{G} \Omega, \mathrm{f}=1 \mathrm{KHz}$
baseline phase shift?
baseline phase shift $(\mathrm{q})=\arctan \left\{\omega \mathrm{C}_{\mathrm{M}} /\left[\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right]\right\}=71.74$

Lindau-Neher Technqiue

$$
\mathrm{Y}(\omega)=\left[\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}+\mathrm{j} \omega \mathrm{C}_{\mathrm{M}}\right] /\left[1+\mathrm{R}_{\mathrm{A}}{ }^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right]
$$

$$
Y(\omega)=A+j B
$$

$$
\mathrm{A}=\left[\mathrm{G}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right] /\left[1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right]
$$

$$
\mathrm{B}=\omega \mathrm{C}_{\mathrm{M}} /\left[1+\mathrm{R}_{\mathrm{A}}^{2}\left(\omega \mathrm{C}_{\mathrm{M}}\right)^{2}\right]
$$

$$
\mathrm{I}_{\mathrm{dc}}=\left(\mathrm{V}_{\mathrm{dc}}-\mathrm{E}_{\mathrm{r}}\right) \cdot \mathrm{G}_{\mathrm{t}} \text {, where } \mathrm{G}_{\mathrm{t}}=1 /\left(\mathrm{R}_{\mathrm{M}}+\mathrm{R}_{\mathrm{A}}\right)
$$

$$
C_{m}=\frac{1}{\omega_{c} B} \frac{\left(A^{2}+B^{2}-A G_{t}\right)^{2}}{\left(A-G_{t}\right)^{2}+B^{2}} \quad R_{m}=\frac{1}{G_{t}} \frac{\left(A-G_{t}\right)^{2}+B^{2}}{A^{2}+B^{2}-A G_{t}}
$$

\square

Extracellular Recording of Neural Acitivity

Extracellular recording of single unit action potential

*Good extracellular recording electrode

- small: unit spike activity
- low impedance: high S / N ratio

Field potential

a potential difference generated by a flow of current thr. finite extracelluar (EC) medium

Direction lines of EC current flow around a stellate cell during somtic action potential

The shape of EC spikes depends on

1) the location of the recording electrode
2) the geometry of the cell

C current flow during an AP at axon hillock of
a spherical cell

EC spikes recorded from electrodes at different depth
Shaping of EC spikes by cell geometry
(pryamidal cell)

Shaping of EC spikes by cell geometry

(stellate cell)

Dendtric current sources $\left(J^{+}\right)$are more distributed in SC than in PC
\Rightarrow Concentrated sink at the soma dominates the EC spike everywhere.

Energy of waveforms recorded three channels of a tetrode at two different consecutive steps.

Position 9
D
Position 8

Mean spike waveforms on 4 channels (row) for each single units (col) identified in 2 steps of C

