Basic Circuit Theory & Patch-clamp Amplifier দপ্তা প্রাণ্টি প্রাণ্ট প্রাণ্টি প্রাণ্ট প্রাণ্টি প্রাণ্টি প্রাণ্টি প্রাণ্ট প্রেণ্ট প্রাণ্ট প্রাণ্ট প্রাণ্ট প্রেণ্ট প্রাণ্ট প্রেণ্ট প্রাণ্ট প্রাণ্ট প্রাণ্ট প্রেণ্ট প্রাণ্ট প্রাণ্ট প্রাণ্ট পর্রেণ্ট পর্

OP amplifer

conductance (Y) parallel combination: $Y = Y_1 + Y_2 + ...$ serial combination: $1/Y = 1/Y_1 + 1/Y_2 + ...$

impedance (Z) parallel combination: $1/Z = 1/Z_1 + 1/Z_2 + ...$ serial combination: $Z = Z_1 + Z_2 + ...$

<u>impedence of</u> resistor: R capacitor: 1 / (jωC)

<u>conductance of</u> resistor: 1/R capacitor: jωC

$$\begin{split} \mathbf{Y}(\boldsymbol{\omega}) &= \left(\mathbf{G}_{\mathrm{M}} + \mathbf{j}\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}}\right) / \left(1 + \mathbf{R}_{\mathrm{A}}\,\mathbf{G}_{\mathrm{M}} + \mathbf{R}_{\mathrm{A}}\,(\mathbf{j}\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})\right) \\ \mathbf{Y}(\boldsymbol{\omega}) &= \left(\mathbf{G}_{\mathrm{M}} + \mathbf{R}_{\mathrm{A}}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2} + \mathbf{j}\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}}\right) / (1 + \mathbf{R}_{\mathrm{A}}^{2}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2}) \\ \mathbf{R}\mathbf{e}(\mathbf{Y}) &= \left[\mathbf{G}_{\mathrm{M}} + \mathbf{R}_{\mathrm{A}}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2}\right] / \left[1 + \mathbf{R}_{\mathrm{A}}^{2}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2}\right] \\ \mathbf{Im}(\mathbf{Y}) &= \boldsymbol{\omega}\mathbf{C}_{\mathrm{M}} / \left(1 + \mathbf{R}_{\mathrm{A}}^{2}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2}\right) \\ \mathbf{baseline \ phase \ shift} &= \arctan\left[\mathbf{m}/\mathbf{R}\mathbf{e}\right] \\ &= \arctan\left[\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}} / \left(\mathbf{G}_{\mathrm{M}} + \mathbf{R}_{\mathrm{A}}\,(\boldsymbol{\omega}\mathbf{C}_{\mathrm{M}})^{2}\right)\right]. \end{split}$$

Lindau-Neher Technqiue

$$\begin{split} Y(\omega) &= [G_M + R_A (\omega C_M)^2 + j\omega C_M] / [1 + R_A^2 (\omega C_M)^2] \\
Y(\omega) &= A + j B \\
A &= [G_M + R_A (\omega C_M)^2] / [1 + R_A^2 (\omega C_M)^2] \\
B &= \omega C_M / [1 + R_A^2 (\omega C_M)^2] \\
I_{dc} &= (V_{dc} - E_r) \cdot G_r, \text{ where } G_t = 1 / (R_M + R_A). \end{split}$$

$$C_m &= \frac{1}{\omega_c B} \frac{(A^2 + B^2 - AG_t)^2}{(A - G_t)^2 + B^2} \qquad R_m = \frac{1}{G_t} \frac{(A - G_t)^2 + B^2}{A^2 + B^2 - AG_t}$$

